Code: 20CS4701A

IV B.Tech - I Semester - Regular Examinations - DECEMBER 2023

DEEP LEARNING (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks		
					Marks		
	UNIT-I						
1	a)	Discuss loss functions in the context of deep	L2	CO1	7 M		
		neural networks. How do they play a critical					
		role in training models?					
	b)	Define Deep Learning and briefly explain	L2	CO1	7 M		
		its significance in the field of machine					
		learning.					
		OR					
2	a)	Discuss the key components of a deep	L2	CO1	7 M		
		neural network architecture? List and briefly					
		describe each component.					
	b)	Explain the concept of activation functions	L2	CO1	7 M		
		in deep learning. Provide examples of					
		common activation functions and their roles.					
					•		

		UNIT-II			
3	a)	Explain the main purpose of a Restricted Boltzmann Machine (RBM) in deep learning. How does it differ from a standard neural network?	L4	CO2	7 M
	b)	Define Autoencoders and discuss their role in unsupervised learning. How do they work to encode and decode input data?	L2	CO2	7 M
		OR			
4	a)	Explain the concept of pretraining in Unsupervised Pretrained Network and how it helps initialize deep neural networks for supervised tasks.	L4	CO2	7 M
	b)	Construct the architecture of a Deep Belief Networks (DBNs) and provide a real-world example.	L3	CO2	7 M
		UNIT-III			
5	a)	Show the purpose of using pooling in CNNs, and how does it contribute to feature extraction and dimensionality reduction?	L3	CO3	7 M
	b)	Name two commonly used efficient convolution algorithms and briefly explain their advantages.	L2	CO3	7 M
OR					
6	a)	Interpet the neuroscientific basis for Convolutional Neural Networks (CNNs).	L3	CO3	7 M

	b)	Discuss the different data types that CNNs	L2	CO3	7 M		
	U)	Discuss the different data types that CNNs	L2	COS	/ 1 V1		
		can process and how the choice of data type					
		affects network architecture.					
	UNIT-IV						
7	a)	Compare and contrast LSTM and GRU,	L4	CO3	7 M		
		highlighting their respective advantages and					
		disadvantages.					
	b)	Illustrate the components and workflow of	L3	CO3	7 M		
		an Encoder-Decoder model.					
		OR		Т			
8	a)	Explain the concept of sequence modeling	L4	CO3	7 M		
		in the context of deep learning. What makes					
		sequence data different from other types of					
		data in machine learning?					
	b)	Describe the core idea behind Deep	L2	CO3	7 M		
		Recurrent Networks and how they extend					
		the capabilities of standard RNNs.					
UNIT-V							
9	a)	Analyze the role of Deep Learning in	L4	CO4	7 M		
		Computer Vision.					
	b)	Illustrate the primary objective of Deep	L3	CO4	7 M		
		Learning in Natural Language Processing					
		(NLP)? How do deep neural networks					
		handle complex language understanding					
		tasks?					

	OR						
10	a)	Explain the challenges and regulatory	L4	CO4	7 M		
		aspects of deploying autonomous vehicles					
		in real-world scenarios.					
	b)	Show the architecture of deep learning-	L3	CO4	7 M		
		based speech recognition system and its					
		applications in real-world scenarios.					